Name: \qquad Date: \qquad Period: \qquad

Calculating Friction

Bell Ringer: What are the two factors that affect the amount of friction?

Learning Target:

Coefficient of Friction:

- How much materials \qquad .
-
- The \qquad the coefficient, the MORE two surfaces \qquad
- \qquad if surfaces are SLIDING past each other

What does friction depend on?

-
-

Friction Formula:

- $F_{f}=\mu F_{N}$,
- $F_{f}=$
- $\mu=$
- $\mathrm{F}_{\mathrm{N}}=$

Example:

How much force must be applied to begin moving a stationary 5 kg wooden box on a wooden floor?

Check for Understanding:

The coefficient of kinetic friction between a 640.-newton crate and a level warehouse floor is 0.25 . Calculate the magnitude of the horizontal force required to move the crate across the floor at constant speed.

Practice Problems:

$$
\begin{aligned}
& \text { We can use the generalized formula } \\
& \qquad F_{f}=\mu F_{N}
\end{aligned}
$$

1. An object has a coefficient of kinetic friction of 0.2 and a normal force of 30 N . Find the force of kinetic friction.
2. An object has a coefficient of static friction of 0.3 and a normal force of 30 N . Find the force of static friction.
3. An object has 45 N of static friction and a normal force of 450 . What is the coefficient?
4. There are 80 N of kinetic Friction and a coefficient of 0.25 . What is the Normal Force?
5. An object has a mass of 20 kg and a coefficient of friction of 0.4 .
a. Find the force of gravity (weight) for the mass.
b. If gravity and normal force cancel, what is the normal force?
c. Find the force of friction in this situation.

$$
\text { Static: } \quad F_{f s}=\mu_{s}\left(F_{N}\right) \quad \text { Kinetic: } F_{f \mathrm{fk}}=\mu_{\mathrm{k}}\left(F_{N}\right)
$$

6. An object is known to have a coefficient of kinetic friction $\left(\mu_{k}\right)$ of 0.167 and a coefficient of static friction ($\boldsymbol{\mu}_{\mathrm{k}}$) of 0.42. If the normal force is 200 N , how much frictional force will it encounter while it is moving?
7. An 80 kg object has a $\boldsymbol{\mu}_{\mathrm{k}}=0.35$ and a $\boldsymbol{\mu}_{\mathrm{s}}=0.60$. Assuming it is on a flat surface
a. What is the normal force on the object (draw a diagram if needed)
b. How much force is required to get the object to start to move from rest?
c. If the above object is moving already, and a tension force of 15 N to the right is pulling it, what will be the NET Force on the object? Force is a vector so direction should be included.
d. What is the acceleration (with direction) of the object based on your answer for part c?
