PHYSICS

Newton's Laws of Motion

Forces and Free-Body Diagrams

Learning Target

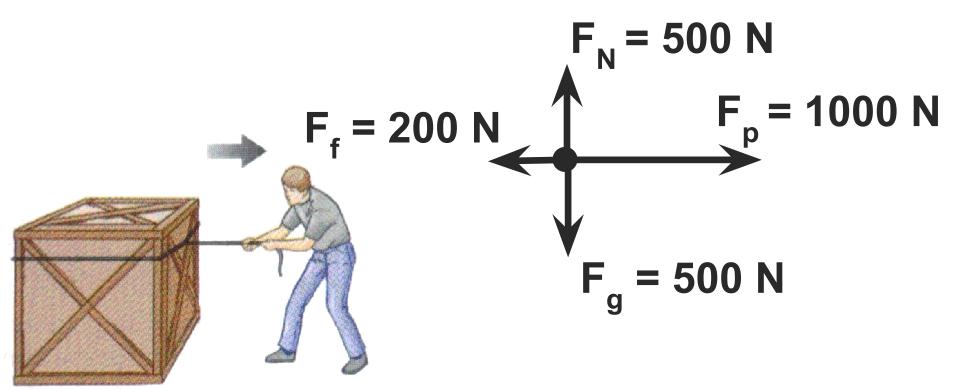
I will be able to determine all of the forces acting on a object and draw the corresponding free-body diagram.

Force

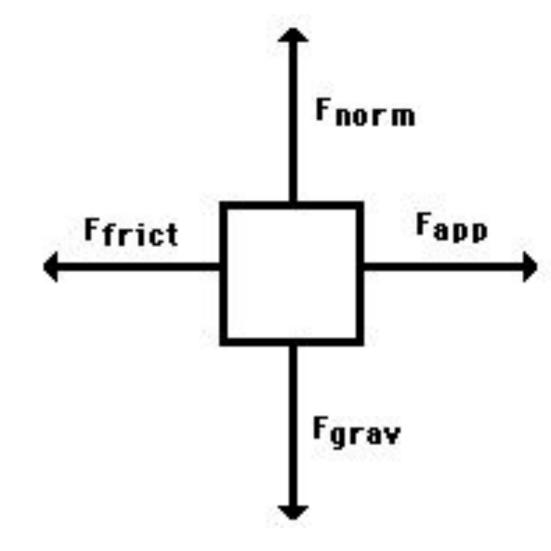
- Action that changes an object's state of motion
- Push or a pull
 - Slow down
 - Speed up
 - Change direction

acceleration

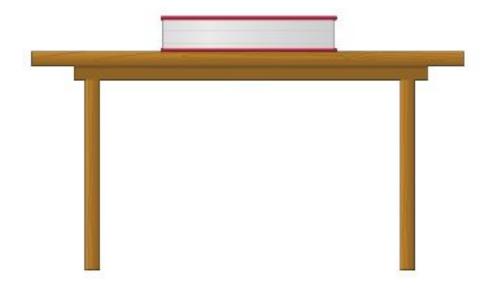
Words	What They Mean	The forces should
"at rest" or "constant velocity"	No acceleration	Be balanced Cancel one another out F _{net} =0
"accelerating" "speeding up" "slowing down"	Accelerating	Unbalanced Some of the forces cancel out, but not all of them F _{net} =ma


Common Forces

- F_a = weight → downward
- F_N = normal → perpendicular to surface (direct physical contact)
- F_f = friction (includes air) → opposite to motion
- F_p = push/pull
- F_T = tension in string


Free Body Diagram

- Shows all forces (vector) acting on an object
- Unit for force = N (Newton)



This diagram shows four forces acting upon an object. There aren't always four forces, For example, there could be one, two, or three forces.

In-Class Problem #1

A 9 N book sits at rest on a table.

Problem 1

- Question 1: Is the object accelerating?
- Question 2: Should the forces be balanced or unbalanced?
- Question 3: What forces are on the object? (look at list)
- Question 4: What are the direction of these forces?

Problem 1

A book is at rest on a table top. Draw the free body diagram of the book.

Question 1: Is the object accelerating?

NO

Question 2:

Should the forces be balanced or unbalanced?

Since the object is not accelerating, the forces would be balanced.

Question 3: What forces are on the book? (look at list) Weight and Normal Force

Question 4: What are the direction of these forces?

Weight - Down

Normal Force - up

Since we know that the forces are balanced, all of the forces should cancel one another out.

On our free diagram - we indicate this by drawing the force vectors of equal size.

Problem 2

Draw the free body diagram of a ball falling through the air. (Ignore air resistance)

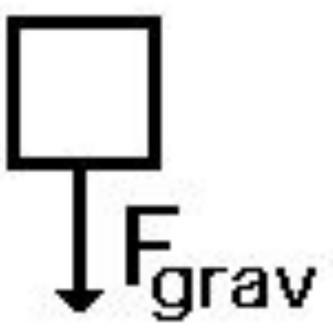
Question 1: Is the object accelerating?

yes

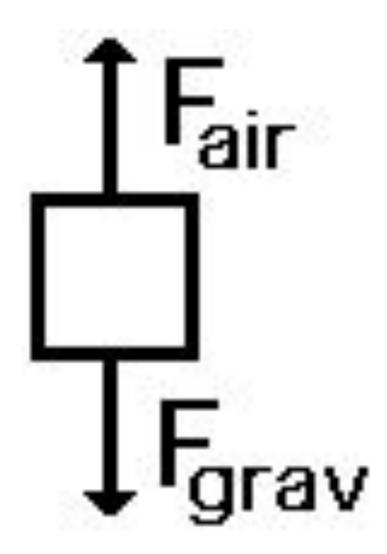
Question 2:

Should the forces be balanced or unbalanced?

Since the object is accelerating, the forces would be unbalanced.

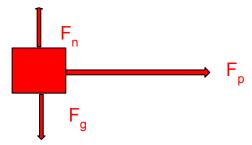


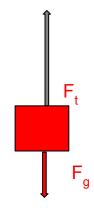
Question 3: What forces are on the book? (look at list)


Weight

Question 4: What are the direction of these forces?

Weight - Down




WArmup 11/19 Drawing Free Body Diagrams.

Draw a free body diagram for each description below.

Craig pushes his cart to the right.

Emily holds up her backpack by the strap.

Explore Newton's laws

- 1. Get Chromebook. Use assigned number
- 2. Go to type Gizmo in Google Search.
- 3. Click Login MrsT726
- 4. password TOY726
- 5. Search "Fan Cart Physics"
- 6. Launch Gizmo
- 7. Complete study guide.
- 8. Due by end of the period.

Free Body Diagrams

Practice drawing free body diagrams.

12 practice descriptions. Be label all forces.