Calculating Forces on an Object

Learning Target

I will be able to determine the net force on an object.

I will be able to determine the magnitude of the forces acting on an object, given the net force.

Common Forces

$\mathrm{F}_{\mathrm{g}}=$ weight \rightarrow downward
$\mathrm{F}_{\mathrm{N}}=$ normal \rightarrow perpendicular to surface
$F_{f}=$ friction (includes air) \rightarrow opposite
 to motion
$F_{p}=$ push/pull
$F_{T}=$ tension in string

Calculating Net Force

Horizontal components and vertical components are independent of each other.

- When calculating the net force we keep the horizontal and vertical forces separate

Calculating Net Force

Net Force: 17 N Right

Your Turn

> Left = Negative
> Down = Negative

Horizontal Component (X)	Vertical Component (Y)
Right 15 N	Up 45 N
Left -45 N	Down -45 N
Difference -30 N	Difference 0 N

Net Force $=30 \mathrm{~N}$ Left

$\mathrm{F}_{\text {net }}$ is 400 N, up

Horizontal Component (X)	Vertical Component (Y)
Right 0N	Up 1200N
Left ON	Down: -800N
Difference 0N	Difference 400 N

