Name:		Date:	Period
	Conservation of	of Energy Notes	
Bell Ringer: Define the following:			
Conservation of Energy Total Energy will alway When Friction is prese This Energy can be the For the following scenarios, Cenergy.	nt, thermal energy is ought of as dissipated	l energy	
A skater stopped at the top o	f the ramp.	A skater riding a	It the very bottom of the ramp.
A Skater riding half way dow	n the ramp.	A skater riding direached the bott	lown the ramp but has not yet tom.

Name:_		Date: Period
		Calculating Energy for Conservation of Energy
Conser	vatior	n of Energy:
•		
Equatio	n:	
_40.000		
Exampl		blem: r ball is dropped from rest at a height of 1.5 meters
•		ravitational potential energy of the ball when it is dropped?
How fas	t is th	e ball moving when it hits the ground? (assume no air resistance)
•		llision with the ground the ball loses 0.8 Joules of energy. What is the maximum height es on its rebound back up?
Practice	Prol	blems
1. <i>A</i>		kg rubber ball is dropped from rest at a height of 1.2 meters What is the gravitational potential energy of the ball when it is dropped?
	b.	How fast is the ball moving when it hits the ground? (assume no air resistance)
	C.	During the collision with the ground the ball loses 1.5 Joules of energy. What is the maximum height the ball reaches on its rebound back up?
2. <i>A</i>		kg rubber ball is dropped from rest at a height of 1.6 meters What is the gravitational potential energy of the ball when it is dropped?
	b.	How fast is the ball moving when it hits the ground? (assume no air resistance)
	C.	During the collision with the ground the ball loses 2.1 Joules of energy. What is the
		maximum height the ball reaches on its rebound back up?

Name	:	Date: Period
3.		kg rubber ball is dropped from rest at a height of 1.6 meters What is the gravitational potential energy of the ball when it is dropped?
	b.	How fast is the ball moving when it hits the ground? (assume no air resistance)
	C.	During the collision with the ground the ball loses 1.1 Joules of energy. What is the maximum height the ball reaches on its rebound back up?
4.		kg rubber ball is dropped from rest at a height of 2.2 meters What is the gravitational potential energy of the ball when it is dropped?
	b.	How fast is the ball moving when it hits the ground? (assume no air resistance)
	C.	During the collision with the ground the ball loses 3.5 Joules of energy. What is the maximum height the ball reaches on its rebound back up?