Average Acceleration
Problems

Example \#1

- A car accelerates from $15 \mathrm{~m} / \mathrm{s}$ to $45 \mathrm{~m} / \mathrm{s}$ in 5 seconds. Calculate the average acceleration of the car.

$$
\begin{array}{ll}
V_{0}=15 \mathrm{~m} / \mathrm{s} & a \\
V_{F}=45 \mathrm{~m} / \mathrm{s} & a \\
t=5 \mathrm{sec} & \\
a= & \frac{V_{F}-V_{0}}{t} \\
a= & a=\frac{45-1 \mathrm{~s}}{5} \\
& a=6 \mathrm{~m} / \mathrm{s} \\
&
\end{array}
$$

\#2

- A truck accelerates from $25 \mathrm{~km} / \mathrm{hr}$ to $45 \mathrm{~km} / \mathrm{hr}$ in 40 seconds. Calculate the average acceleration of the vehicle in $\mathrm{km} / \mathrm{hr} / \mathrm{s}$.

$$
\begin{array}{rlrl}
V_{0}=25 \mathrm{~km} / \mathrm{hr} & \bar{a} & =\frac{V_{F}-V_{0}}{V_{F}=45 \mathrm{~km} / \mathrm{hr}} & \\
t=40 \mathrm{sec} & \bar{a} & =\frac{45-25}{40} \\
a & & & =\frac{20 \mathrm{~km} / \mathrm{hr}}{4 i 5} \\
& & & =0.5 \mathrm{~km} / \mathrm{hr} / \mathrm{s}
\end{array}
$$

\#3

- A car accelerates from rest at a constant rate of 3.5 $\mathrm{m} / \mathrm{s} / \mathrm{s}$. What is the speed of the car 12 seconds later?

$$
\begin{array}{ll}
V_{0}=0 & V_{F}=V_{0}+a t \\
v_{F}=12 \mathrm{~s} & \\
t=0+3.5(12) \\
a=3.5 \mathrm{~m} / \mathrm{s}^{2} & V_{F}=42 \mathrm{~m} / \mathrm{s}
\end{array}
$$

\#4

- A bus accelerates from an initial speed of $12 \mathrm{~m} / \mathrm{s}$ at a constant rate of $1.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the final speed of the bus after 15 seconds?

$$
\begin{aligned}
& V_{0}=12 \mathrm{~m} / \mathrm{s} \quad a=1.2 \mathrm{~m} / \mathrm{s} \quad t=15 \mathrm{~s} \quad V_{F}=? \\
& \begin{aligned}
V_{F} & =V_{0}+a t \\
& =12+1.2(15) \\
& =12+18 \\
V_{F} & =30 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

\#5

- A sports car driver is traveling at $42.47 \mathrm{~m} / \mathrm{s}$ slams the brakes and comes to rest in 4 seconds. Calculate the average acceleration of the car in and $\mathrm{m} / \mathrm{s} / \mathrm{s}$.

$$
\begin{aligned}
& a=\frac{V_{F}-V_{0}}{t} \\
& a=\frac{0-42.47}{4}=-10.6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\#6*

$$
S(t)=\frac{t^{3}+2}{t^{2}}=t+2 t^{-2}
$$

$a_{\text {avg }}$ over $[1,2]=$?

$$
S(t)=\frac{t^{3}+2}{t^{2}}=t+2 t^{-2} \quad v(t)=1-4 t^{-3}
$$

$a_{\text {avg over }}[1,2]=$? $\quad a(t)=12 t^{-4}$

$$
\begin{aligned}
& a_{\text {avg }}=\int_{2-1}^{1} \int_{1}^{2} 12 t^{-4} \partial t=\left.\left[-4 t^{-3}\right]\right|_{1} ^{2} \\
&=\left[-y^{-\frac{1}{2}} \frac{1}{8}-4\right. \\
&+4]=3 \frac{1}{2}=\frac{7}{2}
\end{aligned}
$$

