Ball Bounce Lab

Data:					
	Drop Height	Bounce Height			
		Trial 1	Trial 2	Trial 3	Average

Graph:

After drawing a straight best-fit line for your data, determine the equation for the best-fit line. Use two points on the line (*NOT DATA POINTS!!*) to calculate the slope. Then, use that slope with one point (*NOT A DATA POINT!!*) to determine the *y*-intercept. It is okay if your graph does not go through (0,0).

Best-Fit Eq	uation:
Prediction:	Based on your best-fit equation, determine the drop height necessary to get a bounce height of
	Predicted Drop Height: Actual Drop Height:
	% Error:
% Err	$ror = \frac{ Measured Bounce Height - Given Bounce Height }{Given Bounce Height } \times 100$

Given Bounce Height