
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is circular motion

- When objects travel in a circle. \qquad
\qquad
\qquad

Uniform Circular Motion \qquad

- Circular motion with constant speed. \qquad
Non-uniform Circular Motion
- Circular motion with changing speed \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem

Nolan Ryan throws a baseball so that his 0.46 m forearm could travel a full circle in 0.065 seconds. How fast will a baseball leaving his hand travel?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Centripetal Acceleration
Magnitude :

- $\mathrm{a}=$ acceleration
- $\mathrm{v}=$ velocity
- $r=$ radius

Direction : Towards the centre
Q: Is the acceleration a constant?
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Centripetal Force

\qquad

- Acceleration is towards the center \qquad
-No such thing as a free lunch!
- Net force on an object in uniform circular motion - Net force can come from anywhere
- Centripetal not centrifugal!
$F=m a$ \qquad
$F=\frac{m v^{2}}{r} \quad$ Centripetal Force \qquad
\qquad

| Origin of Centripetal Force |
| :--- | :--- |
| Circular Motion Centripetal Force
 Satellite in orbit around Earth Gravitational force of the Earth
 Car moving around a flat-curve Static frictional force
 Car moving around a banked-exit Static frictional force and normal
 force
 Toy-plane tied to a rope and
 moving in a circle Tension in the rope
 Astronaut in a rotating space
 station Normal force by the surface/floor
 Rider at a roller coaster weight and/or normal force |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem

The Warwolf, a catapult with an arm 3.4 meters long, traveled roughly $76 \mathrm{~m} / \mathrm{s}$. The \qquad arm of the catapult's arm had a mass of 180 kg and a payload of 27 kg of Greek \qquad Fire and other explosives. How much centripetal force did the catapult generate
\qquad in a 1304 siege on Stirling Castle? \qquad

\qquad
\qquad

