

What is Energy?

"Energy makes things go"
(Ability to do work)

Different forms (types) of energy

Gravitational Potential Energy (PE)

- Energy stored due to an object's distance from the Earth (height)
- Gravitational Potential Energy is the Work that gravity can do or has the potential to do.

End Slide

PE Equation

$\mathrm{m}=$ mass (kg) $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s} /$ $\mathrm{h}=$ height (m)

The unit of energy is a Joule (J), named after me:
James Prescott Joule.

PE= mgh

Example \#1

Pierre the French-Canadian duck is about to go skydiving from 4200 m ($14,000 \mathrm{ft}$). If Pierre has a mass of 2.0-kg, what is his Potential Energy? PE = mgh $=(2.0)(9.8)(4200)$ $=82320 \mathrm{~J}$

Example \#2

Sherlock Holmes is preparing to pull off a clever stunt from St. Bart's Hospital, which is 22 m tall. If Sherlock has a mass of 78 kg , how much PE does he have? PE = mg Δh

$$
=(78)(9.8)(22)
$$

$=16819 \mathrm{~J}$

Kinetic Energy

Kinetic Energy is the energy stored in the motion of an object.

```
m = mass
v= velocity
```


A change in Kinetic Energy will also mean a change in speed.

Example \#3

Gomer the hamster has a tiny mass of 4.0 grams. He rolls across Mr. McQueary's carpet at $3.0 \mathrm{~m} / \mathrm{s}$. How much Kinetic Energy does Gomer have?

$$
\begin{aligned}
\mathrm{KE} & =1 / 2 \mathrm{mv}^{2} \\
& =1 / 2(.004)\left(3^{2}\right) \\
& =0.018 \mathrm{~J}
\end{aligned}
$$

Example \#4

 Barry Allen, the fastest man alive, travels 1132 m/s in a full sprint and then slows down to $4.5 \mathrm{~m} / \mathrm{s}$ to blend into Central City. If Barry's mass is 75 kg, how much Kinetic Energy did he lose on his slowdown?$$
\Delta K E=K E_{1}-K E_{2}
$$

$$
\begin{aligned}
\text { N } & =1 / 2 \mathrm{mv}_{1}{ }^{2}-\frac{1}{2} \mathrm{mv}_{2}{ }^{2} \\
& = \\
& (75)\left(1132^{2}\right)-1 / 2(75)\left(4.5^{2}\right) \\
& =48052641 \mathrm{~J}
\end{aligned}
$$

The total work done on an open system will produce a change in kinetic energy. Work-Energy Theorem

$$
W=1 / 2 m v_{f}^{2}-1 / 2 m v_{o}^{2}
$$

$$
K E=1 / 2 m v^{2}
$$

$$
W=K_{f}-K_{o}
$$

A horizontal force of 3250 N is applied to a $110-\mathrm{kg}$ mass initially at rest for a horizontal distance of 0.15 m . What is the final velocity of the mass?

$$
\begin{aligned}
& W=\Delta K \\
& F^{*} \Delta x=1 / 2 m\left(v_{f}^{2}-v_{0}^{2}\right) \\
& (3250)(0.15)=1 / 2(110)\left(v_{f}^{2}-0^{2}\right) \\
& 487.5=55 v_{f}^{2} \\
& \sqrt{v_{f}^{2}}=\sqrt{8.86} \\
& v_{f}=2.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A 105-g hockey puck is sliding across the ice at $1.3 \mathrm{~m} / \mathrm{s}$. A player exerts a constant 4.50-N force to give the puck a velocity of $3.8 \mathrm{~m} / \mathrm{s}$. For what distance did the player apply the force to the puck?

$$
\begin{aligned}
& W=\Delta K \Rightarrow F^{*} \Delta x=1 / 2 m\left(v_{f}^{2}-v_{o}{ }^{2}\right) \\
& 4.50 \Delta x=1 / 2(0.105)\left(3.8^{2}-1.3^{2}\right) \\
& 4.50 \Delta x=0.0525^{*}(12.75) \\
& 4.50 \Delta x=0.6694 \\
& \Delta x=0.149 \mathrm{~m}
\end{aligned}
$$

