Electrostatics	F = qE F = electric force q = electric charge E = electric field	U = Fd $U = electric potential energy$ $F = electric force$ $d = distance between particle$ and source of electric field	$V = \frac{U}{q}$ $V = \text{electric potential}$ $U = \text{electric potential energy}$ $q = \text{electric charge}$
Coulomb's Law	$F_e = k \frac{q_1 q_2}{d^2}$ $F_e = \text{electric force}$ $k = 8.99 \times 10^9 \text{ N} \cdot \frac{m^2}{C^2}$ $q = \text{electric charge}$ $d = \text{distance between charges}$		
Electric Fields	$E = \frac{F_e}{q}$ E = electric field F_e = electric force q = electric charge		

Electric Potential Difference	U = qEd U = electric potential energy q = electric charge E = electric field d = distance between charges	$V = k \frac{q}{d}$ $V = \text{electric potential}$ $k = 8.99 \times 10^{9} \text{ N} \cdot \frac{m^{2}}{C^{2}}$ $q = \text{electric charge}$ $d = \text{distance between charges}$	$\Delta V = V_2 - V_1$ $\Delta V = \text{electric potential}$ difference (voltage) $V_2 = \text{electric potential at}$ second position $V_1 = \text{electric potential at first}$ position
	$\Delta V = \frac{\Delta U}{q}$ $\Delta V = \text{electric potential}$ difference (voltage) $\Delta U = \text{change in electric}$ potential energy $q = \text{electric charge}$	$\Delta V = Ed$ $\Delta V = electric potential$ difference (voltage) $E = electric field$ d = distance between charges	$W = q\Delta V$ W = work q = electric charge ΔV = electric potential difference (voltage)
Ohm's Law	$I = \frac{\Delta q}{t}$ I = current Δq = change in electric charge t = time	$I = \frac{\Delta V}{R}$ I = current ΔV = electric potential difference (voltage) R = resistance	
Electric Circuits	$R_{eq} = R_1 + R_2 + R_3 + \dots R_n$	$I = \frac{V}{R_{eq}} = \frac{V}{R_1 + R_2 + R_3 + \dots R_n}$ I = current	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$ $R_{eq} = \text{equivalent resistance in}$

R_{eq} = equivalent resistance in series circuit R_n = resistance in nth resistor	ΔV = electric potential difference (voltage) R_{eq} = equivalent resistance in series circuit	parallel circuit R_n = resistance in nth resistor
$I = I_1 + I_2 + I_3 + \dots I_n$ I = equivalent current in parallel circuit I_n = current in nth branch		