Unit 1 Review

SCIENTIFIC NOTATION

Example
Number less than 1

Number greater than 10:
0.000001052

9604000000

SCIENTIFIC NOTATION

- Step 7: Move the decimal point so that you have a number that is between 1 and 10 .

\uparrow.
For numbers where a decimal is present, all of the zeroes to the left of the first non-zero number from the left drop into the Pacific Ocean
9.604
\uparrow
For numbers where a decimal is absent, all of the zeroes to the right of the first non-zero number from the right drop into the Atlantic Ocean

SCIENTIFIC NOTATION

- Step 2: Count the number of decimal places moved in Step 1.

-6.

9604000000

9

If the decimal point is

SCIENTIFIC NOTATION

- Step 3: Write the number from Step 7 times 10 with a power of the number determined by Step 2.

From Step 1: $1.052 \quad$ From Step 1: 9.604

From Step 2: -6
From Step 2: 9
1.052×10^{-6}
9.604×10^{9}

SCIENTIFIC NOTATION

- For all numbers between 1 and 10 (including 1 but not including 10) are written as that number times 10°. For example, $1.023=1.023 \times 10^{0}$ in scientific notation.

How to use this device:

1. Look at the problem. Look at the unit that has a number. On the device put your pencil on that unit.
2. Move to new unit, counting jumps and noticing the direction of the jump.
3. Move decimal in original number the same \# of spaces and in the same direction.

Example \#l:

(1) Look at the problem. $56 \mathrm{~cm}=\ldots-\ldots \mathrm{mm}$ Look at the unit that has a number. 56 cm On the device put your pencil on that unit.

Example \#l:

2. Move to new unit, counting jumps and noticing the direction of the jump!

Example \#l:

3. Move decimal in original number the same \# of spaces and in the same direction.

$$
56.0 .
$$

Move decimal one jump to the right. Add a zero as a placeholder.

Example \#l:

56 cm =____ mm

$56 \mathrm{~cm}=560 \mathrm{~mm}$

Independent Variable:

Dependent Variable:

Calculation Comer: Unit Conversion

Step 1: Find the conversion factor needed
 I foot = 12 inches

Conversion factors are written as fractions.

Factor can be written two ways.

Calculation Comer: Unit Conversion

1 foot $=12$ inches

1 foot
 12 inches $=1$

Conversion Factor Example

1 foot $=12$ inches

1 foot

= 1

Calculation Comer: Unit Conversion

Step 2: Determine which unit goes on top and which goes on the bottom.

Calculation Corner: Unit Conversion

Step 2: Units MUST be opposite of each other. $(3 \mathrm{Net})\left(\frac{12 \text { inches }}{1 \mathrm{Net}}\right)=30$ thehes

$$
\begin{array}{r}
\frac{1 \mathrm{ft}}{12 \mathrm{in}} \text { or } \frac{\frac{12 \mathrm{in}}{1 \mathrm{ft}}}{\mathrm{Xft}=39.37 \mathrm{ix}\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)=3.28 \mathrm{ft}}
\end{array}
$$

Again, the units must cancel.

Unit 2 Review

Position Vs. Time Graphs

Sloped Line: Constant Velocity
Flat Horizontal Line: Stopped
Negative Slope - Returning back to original position.

Calculating velocity from Position vs. Time Graph

> Velocity = Displacement / Time

seconds.

Displacement $=50 \mathrm{~m}-0 \mathrm{~m}$

Time $=5$ seconds
Velocity $=50 \mathrm{~m} / 5 \mathrm{~s}$

$10 \mathrm{~m} / \mathrm{s}$

Unit 3 Review

Accelerated Motion

Acceleration

- Average acceleration of an object is the change in its velocity divided by the change in time.
- Stated mathematically, the definition of average acceleration $a_{\text {av }}$ is

$$
a_{\mathrm{av}}=\frac{\text { change in velocity }}{\text { change in time }}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{\Delta t}
$$

Acceleration

- The dimensions of average acceleration are the dimensions of velocity per time or (meters per second) per second. That is,

$$
\frac{\text { meters per second }}{\text { second }}=\frac{\mathrm{m} / \mathrm{s}}{\mathrm{~s}}=\frac{\mathrm{m}}{\mathrm{~s}^{2}}
$$

- Written symbolically as $\mathrm{m} / \mathrm{s}^{2}$, the units of average acceleration are expressed as "meters per second squared."

$E=$ Equation

$$
\begin{aligned}
& a=\frac{(V f-V i)}{t} \\
& t=\frac{(V f-V i)}{a} \\
& V f=a t+V i
\end{aligned}
$$

$\mathrm{Vi}=\mathrm{Vf}-\mathrm{at}$

Example:

1. car accelerates from $50 \mathrm{~m} / \mathrm{s}$ to $100 \mathrm{~m} / \mathrm{s}$ in 10 seconds.
a. What is the initial velocity? $50 \mathrm{~m} / \mathrm{s}$
b. What is the final velocity? $100 \mathrm{~m} / \mathrm{s}$
c. What is the time? 10 s
d. What is the acceleration? (SHOW WORK)
$(100-50 \mathrm{~m} / \mathrm{s})=5 \mathrm{~m} / \mathrm{s} 2$
10s

Free Fall

- The acceleration produced by gravity at the Earth's surface is denoted with the symbol g.
- In our calculations we will use $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$;

Velocity vs. Time Graph

Straight sloped line = Constant acceleration

Flat line = no acceleration or constant velocity

On a Velocity vs. Time graph, the area under the line or curve is equal to the object's displacement.

Unit 4 Review

Vectors and Relative Motion

Scalar

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it.
Magnitude - A numerical value with units.

Scalar Example Speed	Magnitude
Distance	$10 \mathrm{~m} / \mathrm{s}$
Age	15 years
Heat	1000 calories

Vector

A VECTOR is ANY
quantity in physics that has BOTH
MAGNITUDE and DIRECTION.

Vector	Magnitude $\&$ Direction				
Velocity	$20 \mathrm{~m} / \mathrm{s}, \mathrm{N}$	$	$	$10 \mathrm{~m} / \mathrm{s} / \mathrm{s}, \mathrm{E}$	
:---	:---				
Acceleration	5 N, West				
Force					

Vectors are typically illustrated by drawing an ARROW above the symbol. The arrow is used to convey direction and magnitude.

Applications of Vectors

VECTOR ADDITION - If 2 similar vectors point in the SAME direction, add them.

- Example: A man walks 54.5 meters east, then another 30 meters east. Calculate his displacement relative to where he started?

Notice that the SIZE of the arrow conveys MAGNITUDE and the way it was drawn conveys DIRECTION.

Applications of Vectors

VECTOR SUBTRACTION - If 2 vectors are going in opposite directions, you SUBTRACT.

- Example: A man walks 54.5 meters east, then 30 meters west. Calculate his displacement relative to where he started?

Adding Vectors- that aren't triangles

Example Problem:

A man walks 10 m South, 8 meters East, and then 10 meters North. What is the man's final displacement?

- Displacement is your change in position.
- How far away is the man from where he started? Remember always include a direction.
- 8 m East

Non-Collinear Vectors

When 2 vectors are perpendicular, you must use

 the Pythagorean theorem.

A man walks 95 km, East then 55 km, north. Calculate his

Unit 6 Review

Newton's laws

Newton's Laws of Motion

1. An object in motion tends to stay in motion and an object at rest tends to stay at rest unless acted upon by an unbalanced force.
2. Force equals mass times acceleration

$$
(\mathrm{F}=\mathrm{ma})
$$

3. For every action there is an equal and opposite reaction.

Words	What They Mean	The forces should...
"at rest" or "constant velocity"	No acceleration	Be balanced Cancel one another out $\mathrm{F}_{\text {net }}=0$
"accelerating" "speeding up" "slowing down"	Accelerating	Unbalanced Some of the forces cancel o all of them
$\mathrm{F}_{\text {net }}=$ ma		

Determine if the following is balanced or unbalanced:

- Book sitting on a table
- A car accelerating down the road
- A car traveling at constant speed down the road.

Calculating Net Force

Net Force: 17 N Right

Your Turn

> Left = Negative
> Down = Negative

Horizontal Component (X)	Vertical Component (Y)
Right 15 N	Up 45 N
Left -45 N	Down -45 N
Difference -30 N	Difference 0 N

Net Force $=30 \mathrm{~N}$ Left

Example Problem

A balloon is flying through the air. It has a weight of 10 N , and an upward lift of 50 N , what is the net force on the balloon?

50N
Net Force: $50 \mathrm{~N}-10 \mathrm{~N}=40 \mathrm{~N}$ up
10 N

Common Forces

$\mathrm{F}_{\mathrm{g}}=$ weight \rightarrow downward
$\mathbf{F}_{\mathrm{N}}=$ normal \rightarrow perpendicular to surface
$F_{f}=$ friction (includes air) \rightarrow opposite to motion
$F_{p}=$ push/pull
$F_{T}=\operatorname{tg} \operatorname{Frssin}_{\mathrm{N}}$ in string

Unit 7 Review

Friction and Forces in 2D

Forces

Forces that are in equilibrium, must be equal in magnitude and opposite in direction.

Forces in Two-Dimensions

> A box is being pushed East with a force of 20 N , and is also being pushed North with a force of 30 N .

- Since one force is in the x-direction and one is in the y-direction, we cannot simply add or subtract them.
- So what do we do?

Solving for the Resultant Force

The pythagorean theorem can be used to solve for the resultant force.

20N

$$
c^{2}=a^{2}+b^{2}
$$

30N
$C=\sqrt{\left(20^{2}+30^{2}\right)}$
C = 36.1 N North East

Learning Check

15N
A box is being pushed West with a force of 15 N , and is also being pushed South with a force of 10 N .

$$
c^{2}=a^{2}+b^{2}
$$

$$
C=\left(10^{2}+15^{2}\right)
$$

C=18.02 N South West

Friction

$$
\begin{aligned}
& F_{f}=\left(F_{N}\right)(\mu) \\
& \mu=\text { coefficient of friction } \\
& F_{N}=\text { Normal Force }
\end{aligned}
$$

Example of Friction

You are push a 60kg box down the hall. If the coefficient of friction is 0.2 , what is the frictional force?

Step 1- Find Normal Force $=(\mathrm{m})(\mathrm{g})$

$$
(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=588 \mathrm{~N}
$$

Step 2- Solve for Friction

$$
588 N(0.2)=118 N
$$

