Electric Circuits Notes

- Electric circuits have 4 features
- 1. Source of electrical energy
- Ex. battery
- 2. Devices to use the electrical energy
- Ex. light bulb
- 3. Conducting wires
- 4. Switch

- Circuit diagrams - drawings that represent an electric circuit
- Common symbols used:

	Wire Bulb	$-0-$ Open switch	Resistor Closed switch
Ammeter	$-1 \mid \vdash$ Battery	(V)- Voltmeter	

- When resistors resist the flow of electrical energy they turn it into 1 of 3 things
- 1. Light
- Ex. light bulb
- 2. Mechanical energy
- Ex. motor
- 3. Thermal energy
- Ex. space heater
- All resistors due this in some form even if it's not their main purpose
- Ex. A light bulb gets hot
- Question: Identify the parts of the circuit diagram labeled A, B, C, and D.

- A. bulb
- B. battery
- C. closed switch
- D. wire
- Electric circuits fall under 3 main categories

Type	Definition	Example
Open circuit	A noncontinuous loop that prevents the flow of current	
Closed circuit	A continuous loop that allows the flow of current	
Short circuit	A disrupted circuit in which the current bypasses its proper path	

- Question: Arrange the type of circuit in order of current flow from least to greatest.
- Open, closed, short
- Series circuit - there is only one path for the current to flow
- Everything is connected in a single path

- Think of old Christmas lights. When one blows, the whole circuit is broken.
- As you add more and more bulbs to the circuit, each one gets dimmer.
- Each bulb adds resistance, so it decreases the current
- They are simple to make though!

$$
R_{e q}=R_{1}+R_{2}+R_{3}+\ldots R_{n}
$$

- Formula:
- $\quad R_{e q}=$ equivalent resistance (total resistance)
- Unit: Ω
- $\quad R_{n}=$ resistance of n th resistor
- Unit: Ω

$$
I=\frac{V}{R_{e q}}=\frac{V}{R_{1}+R_{2}+R_{3}+\ldots R_{n}}
$$

- Formula:
- I = current
- Unit: A
- $\mathrm{V}=$ voltage
- Unit: V
- $\quad R_{e q}=$ equivalent resistance (total resistance)
- Unit: Ω
- Question: Calculate the current for the circuit diagram below.

- Given: $\mathrm{V}=9 \mathrm{~V}$

$$
\begin{aligned}
& R_{1}=100 \Omega \\
& R_{2}=300 \Omega \\
& R_{3}=50 \Omega
\end{aligned}
$$

- Unknown: I = ?
- Equations: $I=\frac{V}{R_{e q}}$ and $R_{e q}=R_{1}+R_{2}+R_{3}$
- Substitute: $I=\frac{9 V}{R_{e q}}$ and $R_{e q}=100 \Omega+300 \Omega+50 \Omega$
- Solve: $\mathrm{I}=\frac{9 \mathrm{~V}}{450 \Omega}=0.02 \mathrm{~A}$ and $R_{e q}=450 \Omega$
- Parallel circuits - there are multiple branches for the current to travel

- If one branch is broken, the current can flow through the other branches instead
- These are like the new Christmas lights. If one bulb goes out, the other sections of the tree stay lit.
- All the bulbs shine at maximum brightness no matter what happens in the other branches.
- They are more difficult to build.
$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots \frac{1}{R_{n}}$
- Formula:
- $\quad R_{e q}=$ equivalent resistance (total resistance)
- Unit: Ω
- $\quad R_{n}=$ resistance of n th resistor
- Unit: Ω

$$
I=I_{1}+I_{2}+I_{3}+\ldots I_{n}
$$

- Formula:
- I = total current
- Unit: A
- $I_{n}=$ current in nth branch
- Question: Calculate the current for the circuit diagram below.

- Given: $\mathrm{V}=9 \mathrm{~V}$

$$
\begin{aligned}
& R_{1}=10 \Omega \\
& R_{2}=2 \Omega \\
& R_{3}=1 \Omega
\end{aligned}
$$

- Unknown: I = ?
- Equations: $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$ and $\mathrm{I}=\frac{V}{R_{e q}}$
- Substitute: $\frac{1}{R_{e q}}=\frac{1}{10 \Omega}+\frac{1}{2 \Omega}+\frac{1}{1 \Omega}$ and $\mathrm{I}=\frac{9 \mathrm{~V}}{R_{e q}}$
- Solve: $\frac{1}{R_{e q}}=0.1 \Omega+0.5 \Omega+1 \Omega$ and $I=\frac{9 V}{R_{e q}}$
$\frac{1}{R_{e q}}=1.6 \Omega$ and $\mathrm{I}=\frac{9 \mathrm{~V}}{R_{e q}}$
$R_{e q}=0.625 \Omega$ and $\mathrm{I}=\frac{9 \mathrm{~V}}{R_{e q}}=\frac{9 \mathrm{~V}}{0.625 \Omega}=14.4 \mathrm{~A}$

