Electric Circuits Notes

- Electric circuits have 4 features
 - 1. Source of electrical energy
 - Ex. battery
 - 2. Devices to use the electrical energy
 - Ex. light bulb
 - 3. Conducting wires
 - o 4. Switch

- Circuit diagrams drawings that represent an electric circuit
 - o Common symbols used:

- When resistors resist the flow of electrical energy they turn it into 1 of 3 things
 - o 1. Light
 - Ex. light bulb
 - 2. Mechanical energy
 - Ex. motor
 - 3. Thermal energy
 - Ex. space heater
 - All resistors due this in some form even if it's not their main purpose
 - Ex. A light bulb gets hot

• Question: Identify the parts of the circuit diagram labeled A, B, C, and D.

- o A. bulb
- o B. battery
- o C. closed switch
- o D. wire
- Electric circuits fall under 3 main categories

Туре	Definition	Example
Open circuit	A noncontinuous loop that prevents the flow of current	Switch Battery = Bulb
Closed circuit	A continuous loop that allows the flow of current	
Short circuit	A disrupted circuit in which the current bypasses its proper path	Battery = Bulb

- Question: Arrange the type of circuit in order of current flow from least to greatest.
 - Open, closed, short
- Series circuit there is only one path for the current to flow

o Everything is connected in a single path

- Think of old Christmas lights. When one blows, the whole circuit is broken.
- o As you add more and more bulbs to the circuit, each one gets dimmer.
 - Each bulb adds resistance, so it decreases the current
- o They are simple to make though!

$$R_{eq} = R_1 + R_2 + R_3 + \dots R_n$$

- o Formula:
 - R_{eq} = equivalent resistance (total resistance)
 - Unit: Ω
 - \blacksquare R_n = resistance of nth resistor
 - Unit: Ω

$$I = \frac{V}{R_{eq}} = \frac{V}{R_1 + R_2 + R_3 + ... R_n}$$

- Formula:
 - I = current
 - Unit: A
 - V = voltage
 - Unit: V
 - R_{eq} = equivalent resistance (total resistance)
 - Unit: Ω
- Question: Calculate the current for the circuit diagram below.

$$R_1 = 100 \ \Omega$$

$$R_2 = 300 \ \Omega$$

$$R_3 = 50 \Omega$$

- Unknown: I = ?
- Equations: $I = \frac{V}{R_{eq}}$ and $R_{eq} = R_1 + R_2 + R_3$
- Substitute: I = $\frac{9 \ V}{R_{eq}}$ and R_{eq} = 100 Ω + 300 Ω + 50 Ω
- Solve: I = $\frac{9 V}{450 \Omega}$ = 0.02 A and R_{eq} = 450 Ω
- Parallel circuits there are multiple branches for the current to travel

- o If one branch is broken, the current can flow through the other branches instead
- These are like the new Christmas lights. If one bulb goes out, the other sections of the tree stay lit.
- All the bulbs shine at maximum brightness no matter what happens in the other branches.
- They are more difficult to build.

Formula:

- \blacksquare R_{eq} = equivalent resistance (total resistance)
 - Unit: Ω
- \blacksquare R_n = resistance of nth resistor
 - Unit: Ω

- Formula:
 - I = total current
 - Unit: A
 - I_n = current in nth branch
 - Unit: A

Question: Calculate the current for the circuit diagram below.

■ Given: V = 9 V

$$R_1 = 10 \Omega$$

$$R_2 = 2 \Omega$$

$$R_3 = 1 \Omega$$

- Unknown: I = ?
- Equations: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ and $I = \frac{V}{R_{eq}}$
- Substitute: $\frac{1}{R_{eq}} = \frac{1}{10 \Omega} + \frac{1}{2 \Omega} + \frac{1}{1 \Omega}$ and $I = \frac{9 V}{R_{eq}}$
- Solve: $\frac{1}{R_{eq}}$ = 0.1 Ω + 0.5 Ω + 1 Ω and I = $\frac{9 \ V}{R_{eq}}$

$$\frac{1}{R_{eq}}$$
 = 1.6 Ω and I = $\frac{9 V}{R_{eq}}$

$$R_{eq} = 0.625 \ \Omega$$
 and $I = \frac{9 \ V}{R_{eq}} = \frac{9 \ V}{0.625 \ \Omega} = 14.4 \ A$