Electric Field Notes

- Point charge - theoretical charge small enough to test the force exerted by a charged particle without moving the particle
- This doesn't actually exist, we just make it up to test electric fields. Think of dropping a stick into a river. The river is the electric field and the stick is like the point charge.
- Dipole - pair of opposite electric charges of equal magnitude
- Since they are opposites, the field will flow from positive to negative.
- Electric field - the area around a charged object that can exert a force on other charged objects
- A positive point charge dropped in will be pushed away in the direction of the arrows.
- A negative point charge dropped in will be pulled in against the direction of the arrows.
- Question: The figure shows a positive charge placed in a uniform electric field.

$$
\left|\begin{array}{|l|}
\\
+1 \\
\\
\end{array}\right|
$$

Is the force exerted on the +1 C charge directed up or down?

- Down, a positive point charge will be pushed away in the direction of the arrows and the arrows are pointed down.
- Electric field strength

$$
\begin{aligned}
& E=\frac{F_{e}}{q} \\
& \text { - Formula: } \\
& \text { - } E=\text { electric field } \\
& \text { Unit: N/C } \\
& \text { - F = electric force } \\
& \text { - Unit: N } \\
& \text { - } q=\text { electric charge } \\
& \text { - Unit: C }
\end{aligned}
$$

$$
\begin{aligned}
& \qquad E=\mathrm{k} \frac{q}{d^{2}} \\
& \text { Formula: } \\
& \text { ■ }=\begin{array}{l}
\text { electric field } \\
\bullet \text { Unit: } \mathrm{N} / \mathrm{C}
\end{array} \\
& \text { - } \mathrm{k}=8.99 \times 10^{9} \\
& \text { - } \mathrm{q}=\text { electric charge }^{\bullet \text { Unit: } \mathrm{C}} \\
& \text { - } \mathrm{d}=\text { distance between two charged objects } \\
& \\
& \bullet \text { Unit: } \mathrm{m}
\end{aligned}
$$

- Both of these formulas will give you the strength of the electric field. The key is to use the one with the information you have been given in your problem.
- Question: A point charge is placed 3 m from a $4 \mu \mathrm{C}$ charge. What is the strength of the electric field on the point charge at this distance? (Round to the nearest thousands.)
- Given: $\mathrm{k}=8.99 \times 10^{9}$

$$
\begin{aligned}
& q=4 \times 10^{-6} \mathrm{C} \\
& \mathrm{~d}=3 \mathrm{~m}
\end{aligned}
$$

- Unknown: E = ?
- Equation: $\mathrm{E}=\mathrm{k} \frac{q}{d^{2}}$
- Substitute: E $=\left(8.99 \times 10^{9}\right) \frac{4 \times 10^{-6} C}{(3 m)^{2}}$
- Solve: E = 4000 N/C
- You can use the same equations to solve for distances between charges.
- $\mathrm{d}=\sqrt{k \frac{q}{E}}$
- Electric field lines - drawings on a diagram of charged particles indicating the strength and direction of the flow of the field
- Point away from a positive charge and toward a negative charge
- Never cross
- Can show the strength of a field by how close they are
- Close = strong
- Spread out = weak
- There are two types of field lines: non-uniform and uniform
- Non-uniform

- Some areas of the field are stronger and others are weaker
- The lines are closer together around X and more spread out around Y
- Uniform

- All areas of the field have the same strength
- The lines are the same distance apart around X and Y
- Question: Look at the diagram of the electric field around points q_{1} and q_{2} below.

- Based on the image, the charge of q_{1} is \qquad .
- Negative, the field lines are pointing towards it.
- The charge of the blue circle is \qquad .
- Positive, the field lines are pointing out from it.
- The strength of the electric field in between the two charges is \qquad compared to the field outside the charges.
- Stronger, the field lines are closer together.
- The force between the two charges is \qquad .
- Attractive, the lines flow from q_{1} to q_{2}.

