Electric Potential Difference Notes

- <u>Potential</u> is the key word. Here is some review from Gravitational Potential Energy.
 - Gravitational Potential Energy (PE) energy stored due to its position (height) above the Earth.
 - Formula: PE = mgh
 - PE = Potential Energy

	•	Unit: J						
m = mass								

- Unit: kg
- g = 9.8 ● Unit: m/s²
 - h = height

• Formula: W=Fd

d = displacement

- Formula: $W = \Delta PE$
 - Work is equal to the change in Potential Energy
- Question: If a weightlifter lifts a 275 kg mass 0.22 meters above his head, how much PE does the mass have?

- $G = 9.8 \text{ m/} s^2$
- Unknown: PE = ?
- Equation: PE = mgh
- Substitute: PE = (275 kg)(9.8 m/s²)(0.22 m)
- Solve: PE = 593 J

• Here are some helpful symbols to keep in mind.

Symbol	Description	Symbol	Description	Symbol	Description
d	distance	g	acceleration due to gravity	PE_g	gravitational potential energy
Ε	electric field strength	h	height	q	charge
F _e	electromagnetic force	k	Coulomb's constant	U	electric potential energy
F_{g}	gravitational force	m	mass	μ	micro or 10 ⁻⁶

• Electric Potential Energy - potential energy an electric charge has due to its location in an electric field

$$U = qEd$$

• Equation:

U = electric potential energy

- D = distance from electric charge to source of electric field
 Unit: m
- The further away the electric charge is from the source of the field, the more Electric Potential Energy it has
- Question: A point charge of 5.0 μ C is placed at a distance of 0.08 m from a hard rubber rod with an electric field of 1.0 x 10^3 . What is the electric potential energy of the point charge?

• Given:
$$q = 5.0 \ \mu C = 5.0 \ x \ 10^{-6} \ C$$

$$E = 1.0 \times 10^3 \text{ N/C}$$

- Unknown: U = ?
- Equation: U = qEd
- Substitute: U = $(5.0 \times 10^{-6} \text{ C})(1.0 \times 10^{3} \text{ N/C})(\text{d} = 0.08 \text{ m})$
- Solve: U = 4.0 x 10^{-4} J

- Question: What is the electric potential energy of the point charge at 1.3 m?
 - Given: q = 5.0 μ C = 5.0 x 10^{-6} C
 - d = 0.08 m
 - $E = 1.0 \times 10^3 \text{ N/C}$
 - Unknown: U = ?
 - Equation: U = qEd
 - Substitute: U = $(5.0 \times 10^{-6} \text{ C})(1.0 \times 10^{3} \text{ N/C})(\text{d} = 0.08 \text{ m})$
 - Solve: U = 4.0 x 10^{-4} J
- Electric potential electric potential energy of a charged particle divided by its charge
 - Electric potential tells you how strong an electric field is at a given spot

• Question: A hard rubber rod with an electric potential energy of 4.9×10^{-3} J has a charge of 3.0 µC at the tip. What is the electric potential at the tip? Round your answer to one decimal place.

• Given: U =
$$4.9 \times 10^{-3}$$
 J

$$q = 3.0 \ \mu C = 3.0 \times 10^{-6} C$$

- Unknown: V = ?
- Equation: V = $\frac{U}{q}$

• Substitute: V =
$$\frac{4.9 \times 10^{-3} J}{3.0 \times 10^{-6} C}$$

- Solve: V = 1.6 x 10^3 V
- Question: What is the electric potential if the charge at the tip changes to 2.0 µC? Round your answer to one decimal place.

• Given: U =
$$4.9 \times 10^{-3}$$
 J

$$q = 2.0 \ \mu C = 2.0 \times 10^{-6} C$$

• Unknown: V = ?

• Equation: V =
$$\frac{U}{a}$$

- Substitute: V = $\frac{4.9 \times 10^{-3} J}{2.0 \times 10^{-6} C}$
- Solve: V = $2.5 \times 10^3 \text{ V}$

$$V = k \frac{q}{d}$$
• Equation:
• V = electric potential
• Unit: V
• k = 8.99 x 10⁹
• q = electric charge
• Unit: C
• d = distance between electric charge and source of electric field
• Unit: m
• Question: What is the electric potential of a 2.2 µC charge at a distance

Question: What is the electric potential of a 2.2 μ C charge at a distance of 6.3 m from the charge? Recall that Coulomb's constant is k = 8.99 × 10⁹.

• Given: $q = 2.2 \ \mu C = 2.2 \ x \ 10^{-6} \ C$

$$k = 8.99 \times 10^9$$

- Unknown: V = ?
- Equation: V = k $\frac{q}{d}$
- Substitute: V = $(8.99 \times 10^9)(\frac{2.2 \times 10^{-6}C}{6.3 m})$
- Solve: V = 3140 V
- Question: What is the electric potential at a distance of 99 m from the charge?
 - Given: $q = 2.2 \ \mu C = 2.2 \ x \ 10^{-6} \ C$
 - d = 99 m

$$k = 8.99 \times 10^9$$

- Unknown: V = ?
- Equation: V = k $\frac{q}{d}$
- Substitute: V = (8.99 × 10⁹)($\frac{2.2 \times 10^{-6}C}{99 m}$)
- Solve: V = 200 V
- Electric potential difference the difference in electric potential between two spots
 - A.k.a. Voltage
- Question: The magnitude of the electric field between two parallel charged plates is 800.0 N/C. An electron moves to the negative plate 2.5 cm away. Find the electric potential difference and the work. Recall that the charge of an electron is 1.602 × 10⁻¹⁹ C.
 - Given: E = 800.0 N/C
 - d = 2.5 cm = 0.025 m q = 1.602×10^{-19} C
 - Unknown: ΔV and W
 - Equations: $\Delta V = Ed$ and $W = q \Delta V$

- Substitute: △V = (800.0 N/C)(0.025 m) and W = (1.602 × 10⁻¹⁹ C) △V
 Solve: △V = 20 V and W = (1.602 × 10⁻¹⁹ C)(20 V) = 3.2 x 10⁻¹⁹ J