Electric Potential Difference Notes

- Potential is the key word. Here is some review from Gravitational Potential Energy.
- Gravitational Potential Energy (PE) - energy stored due to its position (height) above the Earth.
- Formula: $\mathrm{PE}=\mathrm{mgh}$
- PE = Potential Energy
- Unit: J
- m = mass
- Unit: kg
- $g=9.8$
- Unit: $\mathrm{m} / \mathrm{s}^{2}$
- $\mathrm{h}=$ height
- Unit: m
- Formula: W=Fd
- $\mathrm{W}=$ work
- Unit: J
- $F=$ force
- d=displacement
- Unit: m
- Formula: $W=\triangle P E$
- Work is equal to the change in Potential Energy
- Question: If a weightlifter lifts a 275 kg mass 0.22 meters above his head, how much PE does the mass have?
- Given: $\mathrm{m}=275 \mathrm{~kg}$
$\mathrm{H}=0.22 \mathrm{~m}$
$\mathrm{G}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Unknown: $\mathrm{PE}=$?
- Equation: $\mathrm{PE}=\mathrm{mgh}$
- Substitute: $\mathrm{PE}=(275 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.22 \mathrm{~m})$
- Solve: PE = 593 J
- Here are some helpful symbols to keep in mind.

Symbol	Description	Symbol	Description	Symbol	Description
d	distance	g	acceleration due to gravity	$P E_{g}$	gravitational potential energy
E	electric field strength	h	height	q	charge
F_{e}	electromagnetic force	k	Coulomb's constant	U	electric potential energy
F_{g}	gravitational force	m	mass	μ	micro or 10^{-6}

- Electric Potential Energy - potential energy an electric charge has due to its location in an electric field

- U = electric potential energy
- Unit: Joule (J)
- Q = electric charge

- Unit: C

- E = electric field

Unit: N/C

- $D=$ distance from electric charge to source of electric field

Unit: m

- The further away the electric charge is from the source of the field, the more Electric Potential Energy it has
- Question: A point charge of $5.0 \mu \mathrm{C}$ is placed at a distance of 0.08 m from a hard rubber rod with an electric field of 1.0×10^{3}. What is the electric potential energy of the point charge?
- Given: $q=5.0 \mu \mathrm{C}=5.0 \times 10^{-6} \mathrm{C}$

$$
d=0.08 \mathrm{~m}
$$

$$
\mathrm{E}=1.0 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

- Unknown: $\mathrm{U}=$?
- Equation: U = qEd
- Substitute: $\mathrm{U}=\left(5.0 \times 10^{-6} \mathrm{C}\right)\left(1.0 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)(\mathrm{d}=0.08 \mathrm{~m})$
- Solve: $\mathrm{U}=4.0 \times 10^{-4} \mathrm{~J}$
- Question: What is the electric potential energy of the point charge at 1.3 m ?
- Given: $q=5.0 \mu \mathrm{C}=5.0 \times 10^{-6} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{d}=0.08 \mathrm{~m} \\
& \mathrm{E}=1.0 \times 10^{3} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

- Unknown: U = ?
- Equation: $U=q E d$
- Substitute: $U=\left(5.0 \times 10^{-6} \mathrm{C}\right)\left(1.0 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)(\mathrm{d}=0.08 \mathrm{~m})$
- Solve: U = $4.0 \times 10^{-4} \mathrm{~J}$
- Electric potential - electric potential energy of a charged particle divided by its charge
- Electric potential tells you how strong an electric field is at a given spot
- Equation:

$$
V=\frac{U}{q}
$$

- $\mathrm{V}=$ electric potential
- Unit: Volt (V)
- U = electric potential energy
- Unit: J
- q = electric charge
- Unit: C
- Question: A hard rubber rod with an electric potential energy of $4.9 \times 10^{-3} \mathrm{~J}$ has a charge of $3.0 \mu \mathrm{C}$ at the tip. What is the electric potential at the tip? Round your answer to one decimal place.
- Given: $U=4.9 \times 10^{-3} \mathrm{~J}$

$$
\mathrm{q}=3.0 \mu \mathrm{C}=3.0 \times 10^{-6} \mathrm{C}
$$

- Unknown: $\mathrm{V}=$?
- Equation: $V=\frac{U}{q}$
- Substitute: $V=\frac{4.9 \times 10^{-3} \mathrm{~J}}{3.0 \times 10^{-6} \mathrm{C}}$
- Solve: $\mathrm{V}=1.6 \times 10^{3} \mathrm{~V}$
- Question: What is the electric potential if the charge at the tip changes to $2.0 \mu \mathrm{C}$? Round your answer to one decimal place.
- Given: $U=4.9 \times 10^{-3} \mathrm{~J}$

$$
\mathrm{q}=2.0 \mu \mathrm{C}=2.0 \times 10^{-6} \mathrm{C}
$$

- Unknown: V = ?
- Equation: $V=\frac{U}{q}$
- Substitute: $\mathrm{V}=\frac{4.9 \times 10^{-3} \mathrm{~J}}{2.0 \times 10^{-6} \mathrm{C}}$
- Solve: $\mathrm{V}=2.5 \times 10^{3} \mathrm{~V}$
- Equation:

$$
V=\mathrm{k} \frac{q}{d}
$$

- $\mathrm{V}=$ electric potential

- Unit: V

- $\mathrm{k}=8.99 \times 10^{9}$
- $q=$ electric charge

- Unit: C

- d = distance between electric charge and source of electric field

- Unit: m

- Question: What is the electric potential of a $2.2 \mu \mathrm{C}$ charge at a distance of 6.3 m from the charge? Recall that Coulomb's constant is $\mathrm{k}=8.99 \times 10^{9}$.
- Given: $\mathrm{q}=2.2 \mu \mathrm{C}=2.2 \times 10^{-6} \mathrm{C}$

$$
\mathrm{d}=6.3 \mathrm{~m}
$$

$$
\mathrm{k}=8.99 \times 10^{9}
$$

- Unknown: $V=$?
- Equation: $\mathrm{V}=\mathrm{k} \frac{q}{d}$
- Substitute: $\mathrm{V}=\left(8.99 \times 10^{9}\right)\left(\frac{2.2 \times 10^{-6} \mathrm{C}}{6.3 \mathrm{~m}}\right)$
- Solve: $\mathrm{V}=3140 \mathrm{~V}$
- Question: What is the electric potential at a distance of 99 m from the charge?
- Given: $q=2.2 \mu \mathrm{C}=2.2 \times 10^{-6} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{d}=99 \mathrm{~m} \\
& \mathrm{k}=8.99 \times 10^{9}
\end{aligned}
$$

- Unknown: $\mathrm{V}=$?
- Equation: $\mathrm{V}=\mathrm{k} \frac{q}{d}$
- Substitute: $\mathrm{V}=\left(8.99 \times 10^{9}\right)\left(\frac{2.2 \times 10^{-6} \mathrm{C}}{99 \mathrm{~m}}\right)$
- Solve: V = 200 V
- Electric potential difference - the difference in electric potential between two spots
- A.k.a. Voltage
- Question: The magnitude of the electric field between two parallel charged plates is 800.0 N/C. An electron moves to the negative plate 2.5 cm away. Find the electric potential difference and the work. Recall that the charge of an electron is 1.602×10^{-19} C.
- Given: $E=800.0$ N/C

$$
\begin{aligned}
& d=2.5 \mathrm{~cm}=0.025 \mathrm{~m} \\
& \mathrm{q}=1.602 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

- Unknown: $\Delta \mathrm{V}$ and W
- Equations: $\Delta \mathrm{V}=\mathrm{Ed}$ and $\mathrm{W}=\mathrm{q} \Delta \mathrm{V}$
- Substitute: $\Delta V=(800.0 \mathrm{~N} / \mathrm{C})(0.025 \mathrm{~m})$ and $\mathrm{W}=\left(1.602 \times 10^{-19} \mathrm{C}\right) \Delta V$ - Solve: $\Delta \mathrm{V}=20 \mathrm{~V}$ and $\mathrm{W}=\left(1.602 \times 10^{-19} \mathrm{C}\right)(20 \mathrm{~V})=3.2 \times 10^{-19} \mathrm{~J}$

