Electrostatics Notes

- Electrostatics study of charged particles at rest
- **Ion** atom or molecule with a net charge
 - Due to loss or gain of electrons
 - Can be passed from solar winds or Earth's core
- Question: An oxygen atom picks up two additional, free-floating electrons. Is the charge of the newly formed oxygen ion positive, negative, or neutral?
 - Negative, electrons have negative charges so the more of them you have the more negatively charged the ion will be.
- Electric field the area around a charged object that can exert a force on other charged objects
- Electric force force between two charged objects

$$F = qE$$

- Equation:
 - F = electric force

Q = electric charge
 Unit: coulomb (C)

E = electric field
 Unit: N/C

- Question: A charge of 4.5 × 10⁻⁵ C is placed in an electric field with a strength of 2.0 × 10⁴ StartFraction N over C EndFraction. What is the electric force acting on the charge?
 - Given: q = 4.5 × 10^-5 C

```
E = 2.0 x 10^4 N/C
```

- Unknown: F = ?
- Equation: F = qE
- Substitute: F = (4.5 × 10⁻⁵ C)(2.0 x 10⁴ N/C)
- Solve: F = 0.9 N
- Field lines lines in a diagram that show the direction of flow of the electric field between two charged particles
 - Point away from positive
 - Point toward negative
 - When two charges are near each other:
 - Like charges bend away (repel)
 - Opposite charges combine (attract)

 Question: Based on the field lines, the electric charges indicated by the question marks are _____.

- The same. Like charges bend away from (repel) each other when they are close.
- Electrically charged particles or ions can behave differently when they enter a magnetic field.
- Electric potential energy potential energy an electric charge has due to its location in an electric field

- Question: A charge of 4.5 × 10⁻⁵ C is placed in an electric field with a strength of 2.0 × 10⁴ N/C. If the charge is 0.030 m from the source of the electric field, what is the electric potential energy of the charge?
 - Given: q = 4.5 × 10⁻⁵ C
 F = 2.0 × 10⁴ N/C

$$E = 2.0 \times 10^{4} N/$$

- d = 0.030 m
- Unknown: U = ?
- Equation: U = qEd

- Substitute: U = (4.5 × 10⁻⁵ C)(2.0 × 10⁴ N/C)(0.030 m)
- Solve: U = 0.027 J
- Electric potential electrical potential energy of a charged particle divided by its charge

U V = q Equation: 0 V = electric potential Unit: Volt (V) U = electric potential energy Unit: J \blacksquare q = electric charge

- Unit: C
- Question: What is the electric potential of a 4.5×10^{-5} C charge that has an electric • potential energy of 0.027 J?
 - Given: q = 4.5 × 10^-5 C
 - U = 0.027 J
 - Unknown: V = ?
 - Equation: V = U/q
 - Substitute: V = (0.027 J)/(4.5 × 10⁻⁵ C)
 - Solve: V = 600 V
- Conductor any material that allows electricity or thermal energy to easily move through it

 - Ex. Metals, water, ionic solutions

0

0

Just about everything to the left of this squiggly line is a metal

- Insulator material that restricts the flow of electricity or thermal energy
 - Ex. rubber, glass, wood
- Question: Classify each substance as either a conductor or insulator.
 - A sample of mercury:
 - Conductor, it is a metal since it is to the left of the squiggly line
 - A piece of glass:
 - Insulator, that was one of the examples
 - A rubber hose:
 - Insulator, that was one of the examples
 - A negatively ionized lithium paste:
 - Conductor, it is a metal since it is to the left of the squiggly line
- You can charge objects by friction, a.k.a. rubbing things together
 - Ex. rubbing a glass rod with silk causes electrons to go from rod to silk fabric
 - Now the silk is negative and the rod is positive
- Conduction electrons are transferred from one object to another by direct contact
- Induction electric charges are transferred with nothing touching