Electrostatics Notes

- Electrostatics - study of charged particles at rest
- Ion-atom or molecule with a net charge
- Due to loss or gain of electrons
- Can be passed from solar winds or Earth's core
- Question: An oxygen atom picks up two additional, free-floating electrons. Is the charge of the newly formed oxygen ion positive, negative, or neutral?
- Negative, electrons have negative charges so the more of them you have the more negatively charged the ion will be.
- Electric field - the area around a charged object that can exert a force on other charged objects
- Electric force - force between two charged objects
- Equation:

$$
F=q E
$$

- $\mathrm{F}=$ electric force
- Unit: N
- $\mathrm{Q}=$ electric charge
- Unit: coulomb (C)
- $E=$ electric field
- Unit: N/C
- Question: A charge of $4.5 \times 10^{\wedge}-5 \mathrm{C}$ is placed in an electric field with a strength of $2.0 \times$ $10^{\wedge} 4$ StartFraction N over C EndFraction. What is the electric force acting on the charge?
- Given: $\mathrm{q}=4.5 \times 10^{\wedge}-5 \mathrm{C}$
$E=2.0 \times 10^{\wedge} 4 \mathrm{~N} / \mathrm{C}$
- Unknown: $\mathrm{F}=$?
- Equation: $F=q E$
- Substitute: $F=\left(4.5 \times 10^{\wedge}-5 \mathrm{C}\right)\left(2.0 \times 10^{\wedge} 4 \mathrm{~N} / \mathrm{C}\right)$
- Solve: $F=0.9 \mathrm{~N}$
- Field lines - lines in a diagram that show the direction of flow of the electric field between two charged particles
- Point away from positive
- Point toward negative
- When two charges are near each other:
- Like charges bend away (repel)
- Opposite charges combine (attract)
- Question: Based on the field lines, the electric charges indicated by the question marks are \qquad .

- The same. Like charges bend away from (repel) each other when they are close.
- Electrically charged particles or ions can behave differently when they enter a magnetic field.
- Electric potential energy - potential energy an electric charge has due to its location in an electric field

$$
U=F d
$$

- Equation:
- $\mathrm{U}=$ electric potential energy
- Unit: Joule (J)
- $\mathrm{F}=$ electric force

Unit: N

- d = distance between particle and source of electric field
- Unit: m
- Question: A charge of $4.5 \times 10^{\wedge}-5 \mathrm{C}$ is placed in an electric field with a strength of $2.0 \times$ $10^{\wedge} 4 \mathrm{~N} / \mathrm{C}$. If the charge is 0.030 m from the source of the electric field, what is the electric potential energy of the charge?
- Given: $q=4.5 \times 10^{\wedge}-5 \mathrm{C}$
$E=2.0 \times 10^{\wedge} 4 \mathrm{~N} / \mathrm{C}$
$\mathrm{d}=0.030 \mathrm{~m}$
- Unknown: $\mathrm{U}=$?
- Equation: $U=q E d$
- Substitute: $U=\left(4.5 \times 10^{\wedge}-5 \mathrm{C}\right)\left(2.0 \times 10^{\wedge} 4 \mathrm{~N} / \mathrm{C}\right)(0.030 \mathrm{~m})$
- Solve: U = 0.027 J
- Electric potential - electrical potential energy of a charged particle divided by its charge

- $V=$ electric potential
- Unit: Volt (V)
- $\mathrm{U}=$ electric potential energy
- $\mathrm{q}=\stackrel{\text { electric charge }}{ }$
- Unit: C
- Question: What is the electric potential of a $4.5 \times 10^{\wedge}-5 \mathrm{C}$ charge that has an electric potential energy of 0.027 J ?
- Given: $\mathrm{q}=4.5 \times 10^{\wedge}-5 \mathrm{C}$

$$
\mathrm{U}=0.027 \mathrm{~J}
$$

- Unknown: $\mathrm{V}=$?
- Equation: $V=\mathrm{U} / \mathrm{q}$
- Substitute: $\mathrm{V}=(0.027 \mathrm{~J}) /\left(4.5 \times 10^{\wedge}-5 \mathrm{C}\right)$
- Solve: V = 600 V
- Conductor - any material that allows electricity or thermal energy to easily move through it
- Ex. Metals, water, ionic solutions

Just about everything to the left of this squiggly line is a metal

- Insulator - material that restricts the flow of electricity or thermal energy
- Ex. rubber, glass, wood
- Question: Classify each substance as either a conductor or insulator.
- A sample of mercury:
- Conductor, it is a metal since it is to the left of the squiggly line
- A piece of glass:
- Insulator, that was one of the examples
- A rubber hose:
- Insulator, that was one of the examples
- A negatively ionized lithium paste:
- Conductor, it is a metal since it is to the left of the squiggly line
- You can charge objects by friction, a.k.a. rubbing things together
- Ex. rubbing a glass rod with silk causes electrons to go from rod to silk fabric
- Now the silk is negative and the rod is positive
- Conduction - electrons are transferred from one object to another by direct contact
- Induction - electric charges are transferred with nothing touching

