Lab: Circuit Design Notes

- Lab objective: "How do voltage, current, and resistance affect one another?"
- Using Ohm's Law:
- Equation: $V=I R$
- $\mathrm{V}=$ voltage
- Unit: V
- I = current
- Unit: A
- $R=$ resistance
- Unit: Ω
- Step 1: Rearrange Ohm's Law (V = IR) to what you are trying to solve for
- $\mathrm{V}=\mathrm{IR}$
- $\mathrm{I}=\frac{V}{R}$
- $\mathrm{R}=\frac{V}{I}$
- Step 2: Plug in your known variables
- Step 3: Solve
- Question: $\mathrm{V}=20 \mathrm{~V}$ and $\mathrm{R}=4 \Omega$, find I .
- Use: $\mathrm{I}=\frac{V}{R}$
- Plug in V and $\mathrm{R}: \mathrm{I}=\frac{20 \mathrm{~V}}{4 \Omega}$
- Solve: I = 5 A
- Calculating Resistance in a Circuit:
- Step 1: Decide if the circuit is a series circuit or a parallel circuit
- Remember: Series circuits only have one path
- Remember: Parallel circuits have multiple paths
- Step 2: Choose the right formula
- For Series: $R_{\text {eq }}=R_{1}+R_{2}+\ldots+R_{n}$
- For Parallel: $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}}$
- Step 3: Plug in your known resistances
- Step 4: Solve
- Question: The circuit below has three resistors: R_{1}, R_{2}, and $R_{3} . R_{1}=5 \Omega, R_{2}=$ 3Ω, and $R_{3}=10 \Omega$. Find the equivalent resistance of the circuit.

- Step 1: It is a parallel circuit because there are multiple paths the current can go.
- Step 2: Use the formula for parallel circuits.
- $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}}$
- Step 3: Plug in our known resistances.
- $\frac{1}{R_{e q}}=\frac{1}{5 \Omega}+\frac{1}{3 \Omega}+\frac{1}{10 \Omega}$
- Step 4: Solve
- $\frac{1}{R_{e q}}=\frac{1}{5 \Omega}+\frac{1}{3 \Omega}+\frac{1}{10 \Omega}=\frac{6}{30 \Omega}+\frac{10}{30 \Omega}+\frac{3}{30 \Omega}$
- $\frac{1}{R_{e q}}=\frac{19}{30 \Omega}$
- $R_{e q}=\frac{30 \Omega}{19}=1.6 \Omega$
- Question: If there is a 10 V battery in the circuit from the last example, what would the approximate current be?
- Given: $\mathrm{V}=10 \mathrm{~V}$

$$
R_{e q}=1.6 \Omega
$$

- Unknown: $\mathrm{I}=$?
- Equation: $\mathrm{I}=\frac{V}{R}$
- Substitue: $\mathrm{I}=\frac{10 \mathrm{~V}}{1.6 \Omega}$
- Solve: $\mathrm{I}=6.25 \mathrm{~A}$
- Calculating Power in a Circuit
- Equation: P = IV
- $\mathrm{P}=$ power
- Unit: W
- I = current
- Unit: A
- $\mathrm{V}=$ voltage
- Unit: V
- Question: A circuit has 5 A of current and 20 V of voltage running through it. How much power can a lightbulb that is attached to the circuit put out?
- Given: I = 5 A

$$
V=20 \mathrm{~V}
$$

- Unknown: $\mathrm{P}=$?
- Equation: $\mathrm{P}=\mathrm{IV}$
- Substitute: $P=(5 \mathrm{~A})(20 \mathrm{~V})$
- Solve: $\mathrm{P}=100 \mathrm{~W}$
- Link:
https://www.explorelearning.com/index.cfm?method=cExtAccessSecure.dspResource\& ResourceID=398\&certificate=authorizer\%3dE2020\%26userid\%3dGizmos4Test\%26expir es\%3d2020\%2f03\%2f24+13\%3a47\%3a57\%26hash\%3dmNKhINA5WvLBmQ49rcGAOA \%253d\%253d

