Ohm's Law Notes

- Electrons flow from places with higher electric potential energy to places with lower electric potential energy
- Why? Electricity is like a falling object.
- Things fall from higher gravitational potential energy to places with lower gravitational energy
- i.e. Things fall from high to low
- Current - the continuous flow of electric charge
- Also known as the rate at which a charge moves through a conductor
- Equation:

- I = current
- Unit: ampere (A)
- $\Delta q=$ change in electric charge

Unit: C

- t = time

Unit: s

- Question: It takes 10.0 seconds for 15 coulombs of charge to flow through a wire. How much current is flowing through it?
- Given: $t=10.0 \mathrm{~s}$

$$
\Delta q=15 C
$$

- Unknown: $\mathrm{I}=$?
- Equation: $\mathrm{I}=\frac{\Delta q}{t}$
- Substitute: $\mathrm{I}=\frac{15 \mathrm{C}}{10.0 \mathrm{~s}}$
- Solve: I = 1.5 A
- Electric circuit - a path through which electric charges or current can travel
- Voltage - the difference in electric potential between two spots
- Unit: Volt (V)
- Current flows from higher electric potential to lower electric potential
- The bigger the voltage the more current
- Resistance - the tendency of a material to oppose the flow of charges
- Unit: ohm (Ω)
- The bigger the resistance the less current
- You can change a wire's resistance by changing the wire's
- Thickness
- Length
- Temperature
- Any device that uses electricity has resistance
- Question: A thick wire has \qquad resistance than a thin wire.
- Less
- Question: A long wire has \qquad resistance than a short wire.
- More
- Question: A cool wire has \qquad resistance than a warm wire.
■ Less
- Ohm's Law - current is equal to voltage divided by resistance
- Formula:

$$
I=\frac{\Delta V}{R}
$$

- I = current
- Unit: A
- $\quad \Delta \mathrm{V}=$ change in voltage
- Unit: V
- $\mathrm{R}=$ resistance
- Unit: Ω
- Question: What is the current in a circuit with a 9.0 V battery and a 1.5Ω resistor?
- Given: $\Delta \mathrm{V}=9.0 \mathrm{~V}$
$R=1.5 \Omega$
- Unknown: $\mathrm{I}=$?
- Equation: $\mathrm{I}=\frac{\Delta V}{R}$
- Substitute: $\mathrm{I}=\frac{9.0 \mathrm{~V}}{1.5 \Omega}$
- Solve: I = 6 A
- Question: How does the current in a circuit change if the resistance is tripled?
- The current is $1 / 3$ what it used to be.
- Plug in 3 for R and see what happens to I

