One Dimensional Motion

Displacement, Velocity, and Acceleration

Motion along a straight line

Motion
Position and displacement
Average velocity and average speed
Instantaneous velocity and speed
Acceleration
Constant acceleration: A special case
Free fall acceleration

Assumptions

\square We will first consider only motion along a straight line.

- Simplification: Consider a moving laX object as a particle, i.e. a "point object"

Newark

Physics at

4 Basic Quantities in Kinematics

Displacement, Velocity, Time and Acceleration

Physics at

Motion

\square Motion - the change of position with respect to a frame reference.

- Frame of reference - a selected system in which we measure everything from

Physics at N

Jan. 28-Feb. 1, 2013

Position

- How can we represent position along a straight line?
- Position definition:
- Defines a starting point: origin $(x=0), x$ relative to origin
- Direction: positive (right or up), negative (left or down)
- It depends on time: $\mathrm{t}=0$ (start clock), $\mathrm{x}(\mathrm{t}=0)$ does not have to be zero.
- Position has units of [Length]: meters.

Positive direction

Negative direction

Physics at

Physics at

Vector and Scalar

畨 A vector quantity is characterized by having both a magnitude and a direction.

- Displacement, Velocity, Acceleration, Force ...
- Denoted in boldface type $\mathbf{v}, \mathbf{a}, \mathbf{F}$... or with an arrow over the top $\downarrow, a, \sharp \ldots$.
畨 A scalar quantity has magnitude, but no direction.
- Distance, Mass, Temperature, Time ...

For motion along a straight line, the direction is represented simply by + and - signs. Positive direction

- + sign: Right or Up.
- - sign: Left or Down.

Vectors and Scalars

Scalars
- Distance
- Speed
\square Acceleration?

Vectors
- Displacement
Velocity
- Acceleration

Displacement

\square Displacement is a change of position in time.
\square Displacement: $\Delta x=x_{f}-x_{i}$
\square It is a vector quantity.
\square It has both magnitude and direction: + or - sign
\square It has units of [length]: meters.

Displacement

- Aaron leaves Physics and walks 10. meters west. Then he turns and walks 30. meters east. What is Aaron's total displacement from Physics?

Distance and Position-time graph

\square Displacement in space

TABLE 2.1
Position of the Car at Various Times

Position	$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$
(A)	0	30
(B)	10	52
(C)	20	38
(D)	30	0
(E)	40	-37
()	50	-53

- From A to B: $\Delta x=x_{B}-x_{A}=52 m-30 m=22 m$
- From A to C: $\Delta x=x_{c}-x_{A}=38 \mathrm{~m}-30 \mathrm{~m}=8 \mathrm{~m}$
\square Distance is the length of a path followed by a particle
- from A to B: $d=\left|x_{B}-x_{A}\right|=|52 m-30 \mathrm{~m}|=22 \mathrm{~m}$
- from A to $C: d=\left|x_{B}-x_{A}\right|+\left|x_{C}-x_{B}\right|=22 m+|38 m-52 m|=36 m$
- Displacement is not Distance.

Physics at

Position vs Time

Physics at

Velocity

- Velocity is the rate of change of position.
- Velocity is a vector quantity.
- Velocity has both magnitude and direction.

displacement

Velocity has a unit of

- Average velocity
- Average speed

$$
\begin{aligned}
& v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t} \\
& s_{\text {avg }}=\frac{\text { total distance }}{\Delta t}
\end{aligned}
$$

- Instantaneous
velocity

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \text { displacement }
$$

Average Velocity

\square Average velocity

$$
v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}
$$

is the slope of the line segment between end points on a graph.

- Dimensions: length/time -> [m/s].
SI unit: m/s.
It is a vector.

Average Speed

$$
\begin{aligned}
& \text { Average speed } \\
& 2 \\
& 2 \\
& 2
\end{aligned}
$$

Graphical Interpretation of Velocity

- Velocity can be determined from a position-time graph
\square Average velocity equals the slope of the line joining the initial and final positions. It
 is a vector quantity.
\square An object moving with a constant velocity will have a graph that is a straight line.

Position vs Time

Physics at
Jan. 28-Feb. 1, 2013

New Jersey's Science \& Technology University
THE EDGE IN KNOWLEDGE

Instantaneous Velocity

- Instantaneous means "at some given instant". The instantaneous velocity indicates what is happening at every point of time.
- Limiting process:
- Chords approach the tangent as $\Delta t=>0$
- Slope measure rate of change of position
- Instantaneous velocity:
- It is a vector quantity.

$$
v=\lim _{\Delta \rightarrow \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

\square Dimension: length/time (L/T), [m/s].
It is the slope of the tangent line to $x(t)$.
Instantaneous velocity $\mathrm{v}(\mathrm{t})$ is a function of time.

Uniform Velocity

U Uniform velocity is the special case of constant velocity

- In this case, instantaneous velocities are always the same, all the instantaneous velocities will also equal the average velocity
- Begin with

$$
v_{x}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t} \text { then } x_{f}=x_{i}+v_{x} \Delta t
$$

Average Acceleration

\square Changing velocity (non-uniform) means an acceleration is present.

- Acceleration is the rate of change of velocity.
- Acceleration is a vector.
- Acceleration has both magnitude and direction.
- Acceleration has a dimensions of length/time ${ }^{2}$: $\left[\mathrm{m} / \mathrm{s}^{2}\right]$.
- Definition:
- Average acceleration

$$
a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

- Instantaneous acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t} \frac{d x}{d t}=\frac{d^{2} v}{d t^{2}}
$$

Average Acceleratinn

- Average acceleration

$$
a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

- Velocity as a function of time

$$
v_{f}(t)=v_{i}+a_{\text {avg }} \Delta t
$$

\square Average acceleration is the slope of the line connecting the initial and final velocities on a velocity-time graph

Describing Motion

 It is tempting to call a negative acceleration a "deceleration," but that is not always the case.| Initial velocity | Acceleration | Motion |
| :---: | :---: | :--- |
| + | + | Speeding up |
| - | - | Speeding up |
| + | - | Slowing down |
| - | + | Slowing down |
| - or + | - or + | Constant velocity
 Speeding up from
 rest |
| 0 | 0 | Remaining at rest |
| 0 | | |

Instantaneous and Uniform Acceleration

- The limit of the average acceleration as the time interval goes to zero

$$
a=\lim _{\Delta \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t} \frac{d x}{d t}=\frac{d^{2} v}{d t^{2}}
$$

- When the instantaneous accelerations are always the same, the acceleration will be uniform. The instantaneous acceleration will be equal to the average acceleration
- Instantaneous acceleration is the slope of the tangent to the curve of the velocity-time graph

Physics at
Jan. 28-Feb. 1, 2013

Slope
Slope

Special Case: Motion with Uniform Acceleration (our typical case)

(a)

(b)

- Acceleration is a constant
- Kinematic Equations (which we will derive in a moment)

$$
\begin{aligned}
& v=v_{0}+a t \\
& \Delta x=\bar{v} t=\frac{1}{2}\left(v_{0}+v\right) t
\end{aligned}
$$

$$
\Delta x=v_{0} t+\frac{1}{2} a t^{2}
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

Derivation of the Equation (1)

\square Given initial conditions:

- $a(t)=$ constant $=a, v(t=0)=v_{0}, x(t=0)=x_{0}$
- Start with definition of average acceleration:

$$
a_{\text {avg }}=\frac{\Delta v}{\Delta t}=\frac{v-v_{0}}{t-t_{0}}=\frac{v-v_{0}}{t-0}=\frac{v-v_{0}}{t}=a
$$

- We immediately get the first equation

$$
v=v_{0}+a t
$$

- Shows velocity as a function of acceleration and time
- Use when you don't know and aren't asked to find the displacement

Derivation of the Equation (2)

- Given initial conditions:
- $a(t)=$ constant $=a, v(t=0)=v_{0}, x(t=0)=x_{0}$
- Start with definition of average velocity:

$$
v_{\text {avg }}=\frac{x-x_{0}}{t}=\frac{\Delta x}{t}
$$

- Since velocity changes at a constant rate, we have

$$
\Delta x=v_{\text {avg }} t=\frac{1}{2}\left(v_{0}+v\right) t
$$

- Gives displacement as a function of velocity and time
- Use when you don't know and aren't asked for the acceleration

Derivation of the Equation (3)

\square Given initial conditions:

- $a(t)=\mathrm{constant}=a, v(t=0)=v_{0}, x(t=0)=x_{0}$
- Start with the two just-derived enuatinns:

$$
v=v_{0}+a t \quad \Delta x=v_{\text {avg }} t=\frac{1}{2}\left(v_{0}+v\right) t
$$

We have $\Delta x=\frac{1}{2}\left(v_{0}+v\right) t=\frac{1}{2}\left(v_{0}+v_{0}+a t\right) t \quad \Delta x=x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$

- Gives displacement as a function of all three quantities: time, initial velocity and acceleration
- Use when you don't know and aren't asked to find the final velocity
Physics at
N

Derivation of the Equation (4)

\square Given initial conditions:

- $a(t)=$ constant $=a, v(t=0)=v_{0}, x(t=0)=x_{0}$
\square Rearrange the definition of average acceleration

$$
a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v-v_{0}}{t}=a \text { to find the time } t=\frac{v-v_{0}}{a}
$$

\square Use it to eliminate t in the second equation:

$$
\begin{aligned}
& \Delta x=\frac{1}{2}\left(v_{0}+v\right) t=\frac{1}{2 a}\left(v+v_{0}\right)\left(v-v_{0}\right)=\frac{v^{2}-v_{0}{ }^{2}}{2 a}, \text { rearrange to get } \\
& v^{2}=v_{0}{ }^{2}+2 a \Delta x=v_{0}{ }^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

- Gives velocity as a functron ol acceleration anda displacement
- Use when you don't know and aren't asked for the time

Jan. 28-Feb. 1, 2013

Problem-Solving Hints

- Read the problem
- Draw a diagram
- Choose a coordinate system, label initial and final points, indicate a positive direction for velocities and accelerations

- Label all quantities, be sure all the units are consistent
- Convert if necessary
- Choose the appropriate kinematic equation

$$
v=v_{0}+a t
$$ Solve for the unknowns

- You may have to solve two equations for two unknowns
- Check your results

$$
\Delta x=v_{0} t+\frac{1}{2} a t^{2}
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

Example

- An airplane has a lift-off speed of $30 \mathrm{~m} / \mathrm{s}$ after a take-off run of 300 m , what minimum constant acceleration?

$$
v=v_{0}+a t \quad \Delta x=v_{0} t+\frac{1}{2} a t^{2} \quad v^{2}=v_{0}^{2}+2 a \Delta x
$$

\square What is the corresponding take-off time?

$$
v=v_{0}+a t \quad \Delta x=v_{0} t+\frac{1}{2} a t^{2} \quad v^{2}=v_{0}^{2}+2 a \Delta x
$$

Free Fall Acceleration

- Earth gravity provides a constant acceleration. Most important case of constant acceleration.
- Free-fall acceleration is independent of mass.
- Magnitude: $|a|=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
\square Direction: always downward, so a_{g} is negative if we define "up" as positive,
$a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
\square Try to pick origin so that $x_{i}=0$

Free Fall for Rookie

- A stone is thrown from the top of a building with an initial velocity of $20.0 \mathrm{~m} / \mathrm{s}$ straight upward, at an initial height of 50.0 m above the ground. The stone just misses the edge of the roof on the its way down. Determine
- (a) the time needed for the stone to reach its maximum height.
- (b) the maximum height.
\square (c) the time needed for the stone to return to the height from which it was thrown and the velocity of the stone at that instant.
- (d) the time needed for the stone to reach the ground
\square (e) the velocity and position of the stone at $t=5.00 \mathrm{~s}$

Summary

- This is the simplest type of motion
- It lays the groundwork for more complex motion
- Kinematic variables in one dimension
- Position
- Velocity
- Acceleration
- Acceleration $a(t)$
- All depend on time
- All are vectors: magnitude and direction vector:
- Equations for motion with constant acceleration: missing quantities

$v=v_{0}+a t$
$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}{ }^{2}+2 a\left(x-x_{0}\right)$
$x-x_{0}=\frac{1}{2}\left(v+v_{0}\right) t$
$x-x_{0}=v t-\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& v=v_{0}+a t \\
& \hline x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& x-x_{0}=\frac{1}{2}\left(v+v_{0}\right) t
\end{aligned}
$$

$$
x-x_{0}=v t-\frac{1}{2} a t^{2}
$$

Jan. 28-Feb. 1, 2013

